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This research combines Volterra theory and proper orthogonal decomposition (POD)
into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-
come of the method is a set of linear ordinary differential equations (ODEs) describing
the modal amplitudes associated with both the structural modes and the POD basis
functions for the fluid. For this research, the structural modes are sine waves of varying
frequency, and the Volterra-POD approach is applied to the fluid dynamics equations.
The structural modes are treated as forcing terms which are impulsed as part of the
fluid model realization. Using this approach, structural and fluid operators are coupled
into a single aeroelastic operator. This coupling converts a free boundary fluid problem
into an initial value problem, while preserving the parameter (or parameters) of interest
for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross
flow. The hybrid Volterra-POD approach provides a low-order fluid model in state-space
form. The linear fluid model is tightly coupled with a nonlinear panel model using an
implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle
oscillation prediction over a wide range of panel dynamic pressure values. Time inte-
gration of the reduced-order aeroelastic model is four orders of magnitude faster than
the high-order solution procedure developed for this research using traditional fluid and
structural solvers.

Introduction

Volterra methods1 and proper orthogonal decompo-
sition2,3 (POD) are two of the more prevalent reduced-
order modeling (ROM) techniques well-suited to non-
linear dynamics.4–8 The application of ROM tech-
niques to aeroelastic systems is an active area of re-
search, motivated by the desire for faster algorithms
that are well-suited to the design environment for air-
craft. For example, transonic, fluid-structure inter-
action is a particular application of interest to both
external and internal aerodynamicists because moving
shock waves in the flow necessitate high-fidelity numer-
ical flow solvers which are too cumbersome for iterative
design analysis. Regardless of the application, when
nonlinearities are present in either the flow field or the
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structure, established order-reduction methods that
rely on linearized dynamics are of little use.

Over the past three years, applications of POD
to the Euler equations have produced reduced order
aeroelastic models that properly capture aerodynamic
nonlinearities. A low-order POD representation of
the discrete, 2-D Euler equations9 was coupled with
the von Kármán equation to simulate the dynamics
of flow over a flexible panel.10 Subsequently, a new
approach was taken, involving domain decomposition,
that allowed LCO to be accurately simulated in the
transonic regime.11 In that study, full-order and re-
duced order models of a small flow region containing
a moving shock were decomposed from the larger flow
domain. Both approaches enabled a physically consis-
tent treatment of the aerodynamic nonlinearity. In a
more recent paper,12 the original POD/ROM method-
ology used for flow over an elastic panel10 was revis-
ited to improve the temporal coupling between the
aerodynamic and structural dynamic equations. Fur-
thermore, a modal representation of the structure was
employed, which permitted a more efficient formula-
tion of the reduced-order aeroelastic system.

All of the studies mentioned above relied on a ROM
technique called subspace projection for time integra-
tion of the reduced-order model. While sufficient to
demonstrate the accuracy of the POD basis functions,
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subspace projection was not an efficient way to time
integrate the low-order, aeroelastic ROM. Generally,
four orders of magnitude reduction in fluid system de-
grees of freedom (DOFs) were demonstrated in the
above studies. Time integrating these POD/ROMs
with subspace projection generally produced about
one order of magnitude improvement in compute time
to accompany a much larger drop in problem order.

The applicability of POD basis functions to nonlin-
ear problems has been documented in the literature,
but a tractable nonlinear, low-order model realiza-
tion procedure is a key missing link. Two techniques,
Galerkin projection and direct projection, have been
recently reported as having potential for obtaining
nonlinear terms for POD/ROMs.13 However, the lin-
ear portion of these realization procedures is generally
unstable, requiring dissipation techniques that affect
model performance. The Volterra-POD approach pro-
vides a stable reduced-order equation set, and is an
important advance toward achieving stable, nonlinear
reduced-order models.

The hybrid Volterra-POD method was recently de-
veloped to replace subspace projection for time inte-
gration of POD/ROMs applied to compressible flow
fields.14 The goal of the Volterra-POD approach was
to achieve computational savings on the order of DOF
reductions. This goal was achieved in the initial ap-
plication, where four orders of magnitude reduction
was obtained in both DOFs and compute time. To
date, the hybrid Volterra-POD method has only been
applied to subsonic flow-fields characterized by linear
behavior, with fixed boundaries. The product of the
technique was a linear, state-space system of ODEs
governing the dynamics of modal coefficients corre-
sponding to a small number of POD basis functions.
The state-space realization was obtained from a set of
impulse responses that were processed using the Eigen-
system Realization Algorithm (ERA).15,16

This research will extend the Volterra-POD ap-
proach to supersonic flow-fields with dynamic bound-
ary behavior. The POD-Volterra method will be ap-
plied to a two-dimensional elastic panel in inviscid,
supersonic cross-flow. The Volterra-POD approach
will be used to identify a low-dimensional, linear
POD/ROM for the fluid. The POD/ROM will be
tightly coupled to a low-dimensional, nonlinear model
of the von Kármán plate equation.17 The aeroelas-
tic response will be obtained using an implicit time-
integration scheme.

The Volterra-POD technique involves procedures
that require the selection of parameters such as im-
pulse size, several data windowing lengths, and im-
pulse sampling frequency. The choice of POD basis
affects performance as well. Some considerations for
generating the POD basis include choice of base flow
(the POD/ROM determines the perturbation to this
base flow), snapshot collection method and sampling

frequency (the method of snapshots18 will be discussed
in the next section).

The research will consider two base flow cases, and
two snapshot collection methods. Both uniform flow
at free stream conditions, and steady-state flow over
a static panel deflection will be considered as base
flow cases. An aeroelastic POD basis will be gener-
ated by sampling a small portion of the time history
for a baseline LCO case, which was the approach in
recent applications using subspace projection for this
problem.12 In addition, we will investigate using the
impulse response of the fluid system to generate a POD
basis. The full-system impulse response is collected as
part of the Volterra-POD approach, and the impulse
responses can be sampled as snapshots in lieu of the
LCO time-history. Finally, we will apply POD to the
structural dynamics, couple the structural POD/ROM
with the fluid POD/ROM and examine performance.
We will record the various parameter settings used to
generate the aeroelastic POD/ROMs for each case.

The linearity of the supersonic flow-field will be ex-
amined as part of the ROM analysis. The principle
of superposition applies in a linear flow-field, which
enables a host of linear order-reduction techniques, in-
cluding the Volterra-POD technique detailed in this
paper. While the supersonic, aeroelastic flow-field is
well represented by a linear fluid model, we will demon-
strate that the supersonic flow-field itself is not linear
in general.

The performance of the Volterra-POD aeroelastic
ROMs will be quantified in accuracy, order reduction,
and computational savings. A high-order, full-system
representation of the problem is required for snapshot
collection. The flow field and panel response for the
full-system model will serve as the baseline for per-
formance comparison. Accuracy will be quantified by
comparing LCO panel response, flow-field pressure dis-
tribution on the elastic panel, LCO frequency, and
LCO phase for a variety of panel dynamic pressure
values. Finally, the robustness of the Volterra-POD
method for predicting LCO response across a broad
parameter space will also be addressed.

Formulation

This section describes the full-system aeroelastic
model, introduces POD, and overviews Volterra meth-
ods. In addition, we fully develop the Volterra-POD
approach and the synthesis of aeroelastic ROMs.

Structural Dynamics Equations

Two-dimensional flow over a semi-infinite, pinned
panel of length L is considered. Panel dynamics are
computed with von Kármán’s large-deflection plate
equation, which is placed in nondimensional form us-
ing aerodynamic scales L and u∞

19 (0 < x < 1):

µ

λ

∂4w

∂x4
−Nx

∂2w

∂x2
+
∂2w

∂t2
= µ

(
1

γM2
∞

− p

)
, (1)
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Nx ≡
6µ

λ

(
h

L

)−2 (
1− ν2

) ∫ 1

0

(
∂w

∂x

)2

dx. (2)

The nonlinear, in-plane load in Eqn. (2), serves to limit
panel deflections w(x, t) induced by fluid-structure in-
teraction. Here, the load is assumed to be distributed
uniformally over the panel.17 Equation (1) is compa-
rable to similar formulations found in the literature,17

although wd and td are scaled by h and
(
ρshL

4
)1/2

,
respectively. Two pinned boundary conditions are en-

forced at the panel’s endpoints: w = 0 and ∂2w
∂x2 = 0.

A modal solution for the deflection w(x, t) is as-
sumed:

w(x, t) =

ms∑

i=1

ai(t) sin(iπx), (3)

where ms is the number of structural modes retained,
and the modal amplitudes ai vary in time and are col-
located in the array a. The Galerkin method is used
to obtain a low-order set of ordinary-differential equa-
tions describing the behavior of ai.

17 First, Eqn. (3)
is substituted into Eqn. (1). The resulting expres-
sion is then integrated, following pre-multiplication by
sin(iπx), to yield (i = 1, ...,ms)

1

2
äi+

µ(iπ)4

2λ
ai+

6µ

λ

(
h

L

)−2 (
1− ν2

)
α
(iπ)2

2
ai = µPi,

(4)

where α ≡
∑

r a
2
r

(rπ)2

2 and

Pi ≡

∫ 1

0

(
1

γM2
∞

− p

)
sin(iπx)dx. (5)

The projected pressure components, Pi, are integrated
from the aerodynamic solution with the midpoint rule,
using flowfield pressures obtained at grid points on the
panel surface.12 The aerodynamic equations, their dis-
cretization, and their solution are discussed in later
sections. While equivalent to other formulations in
the literature, Eq. (4) has two notable distinctions.
First, the different form of scaling described above al-
ters equation coefficients, and, second, an expression
relating p to the state of the panel is not assumed.12

The structural dynamics equation Eqn. (4) is placed
in first-order form by introducing a mode speed array,
b, such that ȧi = bi,

ḃi = −

[
µ(iπ)4

λ
+

6µ

λ

(
Liπ

h

)2 (
1− ν2

)
α

]
ai + 2µPi.

(6)
The mode speeds and amplitudes are collocated into
a structural solution array, Y s, leading to a general
form of the structural equation:

Y s = [b,a]
T

(7a)

Ẏ s = Rs(Ys,P ;µ, λ, h/L). (7b)

Fluid Dynamics

The dynamics of inviscid fluid flows are governed by
the Euler equations. The two-dimensional Euler equa-
tions are given below in strong conservation form:20

∂U

∂t
+

∂E(U)

∂x
+
∂F (U)

∂y
= 0 , (8a)

U(x, t) =




ρ
mx

my

ET


 , (8b)

where ρ, mx, my and ET are functions of space and
time. Since we assume an ideal gas for our applica-
tions, this equation set can be closed using the ideal
gas law.

The solution of the Euler equations can be approx-
imated using either finite-difference, finite-volume, or
finite-element techniques. To do this, the spatial do-
main is discretized, and the flow variables in U(x, t) at
each discrete location are collocated into a column vec-
tor U(t). Time integration across the computational
mesh is used to obtain flow solutions.

Since the Euler equations are linear in the time
derivative, and quasi-linear in the spatial deriva-
tive,20,21 the spatial derivatives and the time deriva-
tives in Eqn. (8a) can be separated to form an evolu-
tionary system. To accomplish this, the spatial deriva-
tives of the flux terms ∂E

∂x and ∂F
∂y are grouped to form

a nonlinear operator R acting on the set of fluid vari-
ables. The fluid dynamics from Eqn. (8a) can then be
expressed as

dU(x, t)

dt
= R(U(x, t)) . (9)

When discretized this expression takes the form

dU(t)

dt
= R(U(t)) . (10)

Equation (10) is referred to as the full-system dynam-
ics.

A finite-volume scheme was the basis for the full-
order solver used in this research, which approximated
the integral form of the Euler equations:

d

dt

∫

V

UdV +

∫

∂V

(Eı̂+ F ̂) · dS = 0 . (11)

The grid points in the computational mesh described
earlier were used to form corners for cells. For each
cell, the integral form of the Euler equations reduced
to the following, assuming no grid deformation:

d

dt
Ui,j +

∑

sides

(Ei,j ı̂+ Fi,j ̂) ·
dSi,j
dAi,j

= 0 . (12)

The flux terms Ei,j and Fi,j were computed using
second-order Roe averaging,20 and the flow variables
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Ui,j were evaluated as cell averages. Time integration
across the computational mesh was used to obtain flow
solutions. This was accomplished with a first-order-
accurate, forward Euler approximation.

External boundaries were handled with ghost cells.
The fluid values for the ghost cells at the far
field boundaries were determined using characteristic
boundary conditions.20 The bump-surface was mod-
eled using a transpiration approximation.22 The finite-
volume fluid solver and the transpiration boundary
condition were validated using a combination of the-
ory and experimental data. Subsonic performance was
validated using wind-tunnel data.23 Supersonic per-
formance was validated using oblique shock theory.24

Time-accurate performance was validated by correctly
predicting the vortex shedding frequency from a cylin-
der in cross flow.

Time Integration of the Coupled Full-Order
Equations

The systems of discretized fluid dynamic equations,
U(t), and modal structural equations, Y s, are com-
bined into a single time-dependent system represen-
tative of the complete interaction between structure
and inviscid flow. Time integration proceeds in two
steps, assuming an O(∆t) lag in the synchronization
of fluid and structure. First, the structural variables
are updated from time level n to n+1 using a Crank-
Nicolson procedure to be described below (but limited
here to only structural variables). During this step, the
pressures known at grid points on the panel surface are
considered frozen. In the second step, the aerodynamic
variables are explicitly updated using only structural
variables defined at time level n.

Grid Generation and Time Step

The flow is simulated over a physical domain of
length DL, centered about x = 0, and height DH . The
domain is discretized using I nodes in the streamwise
direction and J nodes normal to the panel. Indices i
(1 ≤ i ≤ I) and j (1 ≤ j ≤ J) are used to denote grid
points comprising corners of cells for the finite-volume
scheme. Grid points are clustered in the direction nor-
mal to the panel at the panel surface, with minimum
spacing denoted by ∆wall. The spacing of grid points is
specified to grow geometrically with j from the panel
boundary. In the streamwise direction, the node spac-
ing is chosen to be uniform over the deforming panel
segment (coincident with the structural grid), while
growing geometrically upstream of the leading edge
(positioned at i = ILE) and downstream of the trail-
ing edge (positioned at i = ITE). Calculations are
carried out with a baseline grid given by the following:
I = 141, J = 116, DL = 50, DH = 25, ILE = 45,
ITE = 97, and ∆wall = 0.0125.

Proper Orthogonal Decomposition

POD is a technique to identify a small number of
basis functions that adequately describe the behav-
ior of the full-system dynamics (Eqn. (10)) across
some parameter space of interest. A summary of POD
as it applies to a spatially-discretized flow field fol-
lows. A detailed description of POD is available in the
literature.4,8 For simplicity, consider only one fluid
variable, w(x, t), which when spatially descritized us-
ing N nodes is denoted w(t). For this fluid variable,
the full-system dynamics in Eqn. (10) is expressed as

dw

dt
= Rw(w) . (13)

Spectral methods approximate the solution w(X, t) as

w(x, t) ≈

M∑

k=1

ak(t)φk(x) . (14)

When the domain is spatially discretized, φk(x) be-
comes a vector φk, and the following relation applies:

w(t) ≈

M∑

k=1

ak(t)φk . (15)

The set of vectors {φk} are discrete basis functions
corresponding to the computational mesh defined for
the numerical solver. The set {ak} are the modal coef-
ficients, and Eqn. (15) can be represented using matrix
algebra. The fluid modes comprise columns of a modal
matrix Φ, and the coefficients are collocated into a
column vector ŵ(t). POD produces a linear transfor-
mation Φ between the full-order solution, w, and the
reduced-order solution, ŵ:

w(t) = W0 +Φŵ(t) . (16)

The reduced-order variable ŵ(t) represents deviations
of w(t) from a base solution W0. The subtraction of
W0 will result in zero-valued boundaries for the POD
modes wherever constant boundary conditions occur
on the domain.

Φ is constructed by collecting observations of the
solution w(t)−W0 at different time intervals through-
out the time integration of the full-system dynamics.
These observations are called snapshots18 and are gen-
erally collected to provide a good variety of flow field
dynamics while minimizing linear dependence. The
snapshot generation procedure is sometimes referred
to as POD training.8

A total of Q snapshots are collected from the full-
system dynamics. These are vectors of length N . The
set of snapshots describe a linear space that is used
to approximate both the domain and the range of the
nonlinear operator Rw. The linear space is defined
by the span of the snapshots.25 POD identifies a new
basis for this linear space that is optimally convergent4
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in the sense that no other set of basis functions will
capture as much energy in as few dimensions as the
POD basis functions. To identify the POD basis, the
snapshots are compiled into an N×Qmatrix S, known
as the snapshot matrix. The mapping function Φ is
then developed using

STSV = V Λ , (17a)

Φ = SV . (17b)

Here V is the matrix of eigenvectors of STS, and Λ is
the corresponding diagonal matrix of eigenvalues. To
eliminate redundancy in the snapshots, the columns
of V corresponding to very small eigenvalues in Λ are
truncated. The matrix of eigenvalues Λ is also resized
to eliminate the rows and columns corresponding to
the removed eigenvalues. If Q −M columns of V are
truncated, the resulting reduced order mapping Φ will
be an N × M matrix. The reduced-order mapping
represents an isomorphism between N and M dimen-
sional space. It determines the coordinates of w(t) in
terms of the M remaining basis functions, φk.

The reduced-order mappings for each fluid variable
are developed separately, and individual S and V ar-
rays are collocated as blocks into a larger set of arrays,
also denoted S and V , to form

U(t) ≈ U0 +ΦÛ(t) , (18a)

Φ = SV . (18b)

These versions of Eqn.’s (16) and (17b), respectively,
apply to the entire set of fluid variables.

POD of the discrete, panel position vector w(x, t)→
w(t) and panel velocity vector s(t) = ẇ(t) is accom-
plished in a similar manner as described above for the
fluid system. Unlike the fluid POD basis functions,
there is no base term subtracted from the snapshots
when generating a structural POD basis.

Volterra Methods

Consider time-invariant, nonlinear, continuous-
time, systems. Of interest is the response of the system
about an initial state X(0) = X0 due to an arbi-
trary input u(t) (we take u as a real, scalar input)
for t ≥ 0. As applied to these systems, Volterra the-
ory1,26–28 yields the response

X(t) = h0 +

∫ t

0

h1(t− τ)u(τ)dτ (19)

+

∫ t

0

∫ t

0

h2(t− τ1, t− τ2)u(τ1)u(τ2)dτ1dτ2

+

N∑

n=3

∫ t

0

..

∫ t

0

hn(t− τ1, .., t− τn)

u(τ1).. u(τn)dτ1.. dτn .

The Volterra series can be accurately truncated be-
yond the second-order term when a weakly nonlinear

formulation is considered:

X(t) = h0 +

∫ t

0

h1(t− τ)u(τ)dτ

+

∫ t

0

∫ t

0

h2(t− τ1, t− τ2)u(τ1)u(τ2)dτ1dτ2 . (20)

The assumption of a weakly nonlinear system is con-
sistent with the emergence of limit-cycle oscillation of
a 2-D aeroelastic system in transonic flow through a
supercritical Hopf bifurcation.29 For linear systems,
only the first-order kernel is non-trivial, and there are
no limitations on input amplitude.

The first- and second-order kernels are presented be-
low in final form:5

h1(τ1) = 2X0(τ1)−
1

2
X2(τ1) , (21)

h2(τ1, τ2) =
1

2
(X1(τ1, τ2)−X0(τ1)−X0(τ2)) .(22)

In (21), X0(τ1) is the time response of the system to
a unit impulse applied at time 0 and X2(τ1) is the
time response of the system to an impulse of twice
unit magnitude at time 0. These response functions
represent the memory of the system. If the system is
linear, then X2 = 2X0 and h1 = X0, which is why
the first-order kernel is referred to as the linear unit
impulse response. The identification of the second-
order kernel is more demanding, since it is dependent
on two parameters. Assuming τ2 > τ1 in (22), X0(τ2)
is the response of the system to an impulse at time τ2.

Time is discretized with a set of time steps of equiv-
alent size. Time levels are indexed from 0 (time 0) to
n (time t), and the evaluation of X at time level n is
denoted by X[n]. The convolution in discrete time is

X[n] = h0 +
N∑

k=0

h1[n− k]u[k] (23)

+
N∑

k1=0

N∑

k2=0

h2[n− k1, n− k2]u[k1]u[k2] .(24)

The linearized and nonlinear Volterra kernels can
be transformed into linearized and nonlinear (bilinear)
state-space systems that can be easily implemented
into other disciplines such as controls and optimiza-
tion.5,27 For linear dynamics, state-space realization
using the Eigensystem Realization Algorithm (ERA)
has been used to generate linear, aeroelastic systems.16

Nonlinear system realization is an active area of re-
search.

System Realization

The ERA method15 identifies a discrete, linear,
time-invariant state-space realization of the form,

X[n+ 1] = AX[n] +Bu[n]

Y [n] = CX[n] , (25)
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using data from a complete ensemble of impulse re-
sponses. Initial state responses can be used in lieu
of impulse responses, but we only consider impulse
response data in this overview for simplicity. The sys-
tems realization procedure takes measurement data
Y [n] from the free response of the system and pro-
duces a minimal state-space model A,B, and C such
that functions Y are accurately reproduced.

The free pulse response of linear, time-invariant, dis-
crete systems is given by a function known as the
Markov parameter,

Ym[n] = CAn−1B . (26)

The superposition principle states that a system re-
sponse to any arbitrary input can be obtained from
a linear combination of impulse responses from that
system. The generalized Hankel matrix of impulse
responses is related to the Markov parameter by the
superposition principle. The Hankel matrix is formed
by windowing the impulse response data. A total
of K data points are provided at discrete time steps
n = 1, ...K, and the r × s matrix Hrs is formed as
follows,

Hn−1
rs =




Ym[n] . . . Ym[n+ s− 1]
Ym[1 + n] . . . Ym[1 + n+ s− 1]

...
...

...
Ym[r − 1 + n] . . . Ym[r − 1 + n+ s− 1]


 (27)

where s is the total size of the data window, and r is
the number of time steps used to shift the data win-
dow. The choice of r and s is arbitrary as long as
r + s+ n ≤ K + 2.

The ERA method eliminates redundant data by us-
ing Singular Value Decomposition (SVD) on H0

rs,

H0
rs = PDQT . (28)

Unwanted state dimensionality is eliminated by trun-
cating the elements of P,D, and Q associated with
very small singular values of H0

rs. The number of
states is reduced to a minimal number q. The number
of observations p and the number of forcing terms m
are known from the problem formulation. The dimen-
sion of the Markov parameter Ym[n] is p×m. Algebra
is used to recast Eqn. (26) in terms of the time shifted
Hankel matrix H1

rs, and the elements P,D, and Q.
The state-space realization flows from this manipula-
tion, and is as follows:

A = D−
1
2PTH1

rsQD
− 1

2 , (29a)

B = D
1
2QTEm , (29b)

C = ET
p PD

1
2 . (29c)

ET
p and ET

m are defined below:

ET
p = [Ip, 0p, . . . , 0p] , (30a)

ET
m = [Im, 0m, . . . , 0m] , (30b)

where 0p and 0m as the null matrices of order p and m
respectively, and Ip and Im are the identity matrices
of order p and m.

Since the discrete time step ∆t = tk+1 − tk is con-
stant, the continuous form of the discrete state-space
realization (Eqn. (25)) is easily obtained. The contin-
uous from, shown below, may require additional state
dimensionality when the discrete realization has real,
negative poles:

Ẋ(t) = AX(t) +Bu(t)

Y (t) = CX(t) . (31)

Aeroelastic ROM Development

The full-order vector of fluid variables U(t) repre-
sents the spatially discretized flow field obtained from
the full-system flow solver. POD provides a trans-
formation Φ that maps U(t) to a low order vector of

modal coefficients Û(t) (from Eqn. 18a). The reduced-

order fluid variable Û(t) will be denoted Y f , which is
the vector of outputs Y (t) (Eqn. (31)) .

A state-space model for Y f can be obtained from
impulse responses using the ERA method. Impulses
for the fluid system use the plate position and ve-
locity coefficients (Y s) as the forcing terms. Each
structural term is impulsed, and the fluid system re-
sponse is generated using the full-order model. The
time history of the impulse response is projected onto
each of the POD basis functions to obtain the impulse
response of the reduced-order fluid vector Y f . POD
basis functions are obtained using the method of snap-
shots as described previously. The process is repeated
for each structural mode, and the collection of impulse
responses is used to generate a linear state-space model
for the reduced order fluid system,

Ẋf = AfXf +BfY s , (32a)

Y f = CfXf , (32b)

where Xf is the state vector from the ROM realiza-
tion, and Y s represents the modal coefficients for the
structural deformation.

The structural model from Eqn. (7b) is coupled to
the reduced-order fluid model (Eqns. (32a) and (32b))
through the projected pressure term P . The reduced-
order variables, Y s, are obtained from the dynamic
statesXf by the linear mapping Cf . Fluid pressure on
the panel is extracted from Y s using the portion of the
reduced order mapping (Eqn. (18a)) that pertains to
the moving boundary. Equation (5) is used to project
the pressure values into P . The mapping of reduced
order fluid states to projected pressure is denoted fP ,

P = fP (Xf ) . (33)

Equation (33) is used to couple the structure and fluid
dynamic state variables,

Ẏ s = Rs(Ys, fP (Xf );µ, λ, h/L) . (34)
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Equations (32a) and (34) comprise the low order,
aeroelastic ROM with linear fluid dynamics, and non-
linear plate dynamics.

The fluid and structural terms are grouped into ar-
rays Y and R as follows:

Y =

[
Xf

Y s

]
, (35)

R̂ =

[
AfXf +BfY s

Rs(Y s, fP (Xf );µ, λ, h/L)

]
. (36)

The reduced-order, aeroelastic system is denoted as
simply,

Ẏ = R̂(Y ) . (37)

Time Integration of the Aeroelastic System

The aeroelastic ROM (Eqn. (37)) is integrated in
time with the two-time level, second-order accurate,
Crank-Nicolson method:

Y n+1 − Y n

∆t
=

1

2

(
R̂n+1 + R̂n

)
, (38)

R ≡ Y n+1 −
∆t

2
R̂n+1 − Y n −

∆t

2
R̂n = 0. (39)

At each time level, Y ≡ Y n+1 is computed from Eqn.
(39) using a chord technique with a time-frozen Jaco-
bian

(
I −

∆t

2
Ĵo

)(
Yk+1 − Yk

)
= −R(Yk), (40)

where k is a subiteration index and Ĵo is the Jacobian
of the reduced order aeroelastic system, evaluated for
the base flow condition and Y s = 0. A suitable num-
ber of subiterations are computed at each time step to
obtain a good approximation to Y n+1; typically, 1-2
subiterations are generally sufficient to drive R to near
machine zero. Since peak panel deflection is no more
than 2% of panel length for the cases considered, the
chord method is rapidly convergent. Prior to subiter-
ation, Y is predicted from the explicit formula

Y = Y n +∆tR̂n. (41)

Results

The results that follow consider supersonic free
stream flow conditions at Mach 1.2, with sea level con-
ditions. The Galerkin panel model contains 4 modes,
for a total of 8 DOFs.

Impulse Response of a Supersonic Fluid

Impulsing the forcing term (or terms) of a truly lin-
ear system produces a response that is the building
block necessary to recreate the system output from
any arbitrary forcing function. Linear superposition
allows the response of the system to be constructed in

this fashion since any forcing function can be assem-
bled from a series of impulses.

The supersonic flow field was essentially linear10

once LCO was fully developed. Shock waves formed
at the ends of the panel, and although they varied in
strength dynamically with the LCO, they were station-
ary, and the flow field between the shocks (directly over
the panel) was linear for this case. However, impuls-
ing the uniform, supersonic flow field with structural
modes (and modal velocities) produced very nonlinear
transient behavior. Figure 1 shows density contours of
the flow 1.10802 nondimensional time units from the
impulse of the fundamental structural velocity mode.
The sudden appearance of a velocity profile on the
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Fig. 1 Density contours 1.10802 time units after
impulse

boundary (and its sudden removal one time step later)
produced a shock wave of varying strength running the
length of the panel. Early during the transient period,
this shock welled upward away from the panel, and
convected downstream. The convection of the shock,
combined with the patterns of varied intensity pro-
duce the odd (but physical) spatial oscillation above
the panel shown in Fig. 1. After about 2.5 time units,
this pattern had both convected well beyond the end
of the panel, and diffused into a more benign flow pat-
tern. After 25 time units uniform flow was restored.
The flow dynamics were essentially linear after the ini-
tial 2.5 time unit transient.

The results that follow will detail the usefulness of
such impulse responses for generating a reduced-order
fluid model. The linear portion of the impulse response
time integrations contained some of the LCO flow field
characteristics, otherwise none of the ROM options
would have reproduced LCO. However, the impulse
responses themselves would not produce POD basis
functions capable of correctly modelling the LCO flow
field. This suggests that the supersonic flow field was
not truly linear.
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Identification of Fluid Modes

Fluid modes were obtained using POD as outlined
previously. Aeroelastic fluid modes were obtained
from a set of 100 snapshots. Snapshots of the full-
order, aeroelastic system were taken at equally spaced
intervals, from start-up through 25 time units, using
time integration of the full system, with λ = 25. For all
time integration cases that follow, the aeroelastic sys-
tem was initialized with the base flow condition, and
a small perturbation (height of 0.0001) in the funda-
mental panel position mode (denoted a1 in Eqn. (7a).
Snapshots were taken of primitive fluid variables ρ, u,
v, and ET , not the conserved variables given in Eqn.
(8b). Primitive variables enable Galerkin projection
for the fluid as a possible means for obtaining non-
linear terms13 in future analysis. At Mach 1.2, LCO
required about 300 time units to become fully devel-
oped, and the small, 25 time unit training window was
shown to be adequate in previous work.10,12

The results that follow refer to two cases. For the
first case, the base flow term U 0 from Eqn. (18a) con-
sisted of uniform, free-stream conditions everywhere
throughout the domain (referred to as slug flow). The
second case considered steady state flow over the ini-
tial panel perturbation as the base flow term U 0. For
both cases, the first two modes for each fluid variable
contained over 98% of the energy content, and sys-
tem realization was performed using a total of M = 8
fluid modes (2 modes per fluid variable). We also at-
tempted to use the impulse response data as snapshots,
in lieu of aeroelastic time integration. The same sys-
tems realization procedure was repeated to produce
a Volterra-POD ROM for this third case, but this
ROM did not correctly produce LCO. We documented
our observations, and recommendations regarding this
third approach in a separate section.

System Realization

We considered 8 POD modes, the dimensionality of
Y f , which produced eight impulse responses for each
forcing function. With 8 forcing terms in Y s, the total
number of impulse responses numbered 64. Realiza-
tion via the ERA process for each of the aeroelastic
cases is detailed below.

Uniform Base Flow

A state-space realization of the form in Eqn. (25)
was obtained using ERA for the slug-flow base case.
The impulse amplitude was arbitrarily chosen to be
0.1. The full-system response to this impulse was sam-
pled over 30 non-dimensional time units at a rate of
dt = 0.015432 for a total of K = 1944 discrete data
points. The fluid system impulse response was gen-
erated using the full-order model. The time history
of the full-order impulse response was projected onto
each of the POD basis functions to obtain the impulse
response of the reduced-order fluid variable Y f . The

data was windowed using s = 192 and r = 100. Every
fifth data point was used in the realization algorithm
providing data at the rate of dt = 0.07716. These val-
ues of dt, s and r were chosen by trial and error to
produce realizations whose impulse responses closely
matched the data. The value of m was 8 to match
the number of forcing terms, and p = 8 was chosen to
match the number of ROM coefficients. The collection
of impulse responses formed an 8×8 Markov parameter
Ym[n] function from Eqn. (26). The number of states,
q = 8, was chosen to match the number of ROM co-
efficients, so SVD on the Hankel matrix formed from
Y [n = 1] was used to truncate all but the largest 8
singular values, yielding the matrices P, D, and Q.
Equations (29a, 29b, 29c) were then used to generate
a linear state-space model for the reduced-order fluid
system,

x[n+ 1] = Ax[n] +B β u[n] , (42a)

y[n] = Cx[n] , (42b)

where β was a scaling parameter that was used to cal-
ibrate the forcing amplitude.

The value of the scaling parameter β = 650 was
set by tuning the ROM results to the snapshot data.
Theoretically, β should have been the inverse of the
impulse size (β = 1/0.1 = 10). The need for an or-
der magnitude increase in β reveals an inefficiency in
projecting the impulsed flow-field onto the aeroelastic
modes. Evidently, the impulsed flow-field contained
structures not adequately represented in the aeroe-
lastic modes, and a significant amount of flow energy
was not captured in the projections used to compute
the modal-impulse behavior. However, enough linear,
aeroelastic information was resident in the impulsed
flow-field for the Volterra-POD realization to produce
correct results (with β properly adjusted).
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Fig. 2 Response of density modes to velocity term
impulse, uniform base flow case

The impulse response of Eqns. (42a and 42b) was
obtained with β = 1. The impulse responses of the
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reduced-order system were in good agreement with the
impulse responses from the full-order system used by
ERA. The response of the two density modes to an
impulse in the first panel velocity term b1 within Y s

(defined in Eqn. (7a)) are shown in Fig. 2. The con-
tinuous form of Eqns. (42a and 42b) were obtained
via a function call in MATLAB, which provided the
matrices Af , Bf and Cf for time integration of the
aeroelastic model given in Eqn. (37).

Steady-state Base Flow

The same procedure was repeated, but the aeroe-
lastic modes were computed using a steady-state base
flow condition described earlier. For this realization,
every 20th data point was used in the realization algo-
rithm providing data at the rate of dt = 0.3086. The
same impulse amplitude of 0.1 was used for this case,
and the full-system impulse response was sampled at
the same rate. However, the impulses were added to
the steady-state panel deflection for this case. The
data was windowed using s = 47 and r = 20. Again,
the value of m was 8 to match the number of forcing
terms, and p = 8 was chosen to match the number of
ROM coefficients. The scaling parameter from Eqn.
(42a) was β = 800, and was determined by tuning the
ROM to the snapshot data.
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Fig. 3 Response of density modes to velocity term
impulse, steady-state base flow case

The larger value of dt eliminated much of the high-
frequency transient, and focused ERA on the low-
frequency portion of the impulse response. This is
reflected in the impulse response accuracy shown in
Fig. 3, which considers the response of the two density
modes to an impulse in the first panel velocity term b1
within Y s (defined in Eqn. (7a)). The first 3 seconds
of the impulse response curve was not matched very
closely by the ROM; however, these initial transients
were not important to the LCO flow field.

ROM Time History

Both the slug-flow base case and the steady-state
base case Volterra-POD ROMs, described above, were
time-integrated using the aeroelastic training condi-
tions of Mach 1.2 and λ = 25. The results are shown
in Fig. 4. Both cases correctly predicted LCO, but

Time

P
an

el
D

ef
le

ct
io

n
(3

/4
C

ho
rd

)

0 100 200 300 400

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4 Full System
8 Mode ROM, Slug-Flow Base Case

ROM
Training

Time
P

an
el

D
ef

le
ct

io
n

(3
/4

C
ho

rd
)

0 100 200 300 400

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4 Full System
8 Mode ROM, Steady-State Base Case

ROM
Training

Fig. 4 Panel deflection (wd/h) time history, λ = 25,
Mach 1.2

the steady-state base case was more accurate in am-
plitude, frequency and phase than the slug-flow base
case. The 3/4 chord panel-amplitude was muted by
9% for the steady-state base case, and magnified by
25% for the slug-flow base case. The phase and fre-
quency error were negligible for the steady-state base
case, but the larger amplitudes of the slug-flow base
case introduced a small increase in LCO frequency (re-
sulting in an accumulating phase error).

We suspect the improvement in performance asso-
ciated with the steady-state base flow was most likely
due to the choice of data windowing parameters used
in the ERA realization. We noticed no substantive
differences in either the POD modes, or the impulse
response of the full system flow-field between either
case. Data windowing parameters were selected to
provide a realization whose impulse response closely
matched the original impulse data. As noted previ-
ously, reducing the size of dt introduced high-frequency
dynamics into the realization. The slug-flow base case
was formed using a very small value of dt. Conse-
quently the impulse response of the model (see Fig. 2)
matched the initial transient in the data better than
the steady-state base flow case (i.e. Fig. 3), which
used a much larger dt. However, the high-frequency
data in the impulse response was not germane to the
large-time behavior of the aeroelastic system, and its
inclusion resulted in a less accurate ROM under aeroe-
lastic conditions.
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ROM Robustness

Both aeroelastic ROMs were time-integrated using
a variety of panel dynamic pressure values (λ). The
intent was to explore the predictive accuracy of the
Volterra-POD ROMs across a nonlinear parameter
space. Both ROMs were trained at λ = 25 (as de-
scribed earlier), and robustness was defined as the
ROM’s ability to predict panel amplitude (at the 3/4
chord position) in fully developed LCO across the pa-
rameter space, including non-LCO cases.
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Fig. 5 Panel response verse dynamic pressure

The ROM results are compared with full system re-
sults, and results from the literature30 in Fig. 5. The
steady-state base case ROM was better suited to large
LCO amplitudes where the larger panel amplitudes ex-
cited a panel nonlinearity that corrupted the results
of the slug-flow base case. Conversely, the use of slug
flow as the base-flow term permited a more accurate
prediction of LCO onset at the lower values of λ. A
non-LCO solution for the slug-flow base case occurred
when Y f = [0] and Y s = [0], but the use of steady-
state flow over an initial, non-zero value of Y s required
a non-zero value of Y f to produce Y s = [0]. The
steady-state base case had difficulty producing this
result. In addition, the small panel amplitudes near
LCO-onset did not excite the high-frequency errors in
the slug-flow base case that were evident at larger val-
ues of λ.

Aeroelastic Structural Modes

Aeroelastic structural modes were generated using
100 snapshots of the structural response obtained dur-
ing the training of the fluid ROM. The structural
snapshots corresponded exactly in time with the set
of 100 snapshots used to construct the fluid ROMs.
Snapshots were taken of the panel position and ve-
locity vectors (w(t) and ẇ(t) respectively), and sub-
space projection8 was used to form a reduced-order

structural model. Subspace projection relied on the
Galerkin panel model for time integration. The panel
position and velocity from the Galerkin panel model
were projected onto the POD basis functions at ev-
ery step in the time integration. Subspace projection
demonstrated the adequacy of the POD modes at cap-
turing the dynamic panel behavior, while maintaining
the nonlinearity of the panel dynamics.
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Fig. 6 Panel response (wd/h) with aeroelastic
structural modes

The reduced-order structural model was tightly cou-
pled with the steady-state base case fluid ROM and
time-integrated using the parameter value λ = 25.
Figure 6 compares the results with the full system
response, and the POD/ROM results from Fig. 4
(for the steady-state base case). For clarity, the top,
right-hand corner of the entire time response is ex-
panded in the lower portion of Fig. 6. Two POD
modes per structural variable (4 DOFs total) yielded
essentially identical results to the 4 mode (8 DOF)
Galerkin result. Further order-reduction greatly de-
creased the panel response. For this problem, the
full-system structural model was very low order, and
the additional order reduction from POD was immate-
rial. However, future application of this technique will
involve very high-order, nonlinear structural models
requiring order-reduction along with the fluid model.
These results demonstrate that a single training event
can produce adequate POD modes for both the fluid
and structure.

ROMs Using Impulse Response Modes

As an excursion, the aeroelastic fluid modes were
replaced with POD modes derived from the impulse
responses of the full system. Forty snapshots were col-
lected from each of the eight impulse responses gener-
ated by impulsing the elements of Y s. The snapshots
were taken at even intervals over a time integration
lasting 30 time units. Since there were 8 impulse re-
sponses, a total of 320 snapshots were generated. Over
98% of the flow energy was contained in the first 4
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modes for each of the 4 fluid variable. This suggests a
16 mode ROM would be adequate for the fluid. To test
the adequacy of the POD basis, the full-system flow
solution from time integration using λ = 25 and Mach
1.2 was projected onto the POD basis during time in-
tegration. The modal amplitudes were examined and
modes 6, 7 and 8 in energy content had much greater
contribution to the aeroelastic flow field than did the
first 4 modes (note that the modes were normalized).
This observation led us to consider 10 modes per fluid
variable for ROM realization. ERA was used to syn-
thesize a 40 mode ROM, which required 43 states after
conversion to the continuous form. The Volterra-POD
ROM was coupled with the Galerkin panel model as
described previously.
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Fig. 7 Panel pressure degradation using impulse
response modes

Unfortunately, the aeroelastic ROM produced a
slowly divergent flutter instead of LCO. However, the
panel pressures from the Volterra-POD ROM corre-
sponded very well with the pressures obtained by pro-
jecting the full-system response onto the POD basis,
and extracting the panel pressures (see Fig. 7). This
further suggests that the POD basis derived from the
impulse response data was not adequate for modeling
the aeroelastic flow field. The accuracy of the ROM
at representing the full system response was encour-
aging, and the frequency of unstable oscillations did
match the LCO frequency. There is clearly some flow-
field structure in the impulse response modes relevant
to LCO, but more investigation is required before these
modes can be used to generate an accurate ROM for
the supersonic case.

Computational Performance

The motivation for employing the POD-Volterra ap-
proach was to realize a computational performance
improvement consistent with the reduction in the num-
ber of DOFs. Computational performance, summa-

rized in Table 1, was assessed by measuring the wall
clock time to provide fully developed LCO of the flow
(400 time units with λ = 25). All computations were
run on a 800 MHz Pentium-based, personal computer.
The time-step used for the full system was based on
a Courant-Friedrichs-Lewy (CFL) condition of 0.5,
which was the highest value allowing for stability of
the second-order method. The reduced-order time in-
tegration used a time step size of 0.05 time units. The
POD-Volterra ROM reduced compute time by four-
orders-of-magnitude, and realized an improvement in
performance consistent with the DOF reduction.

Flow Solver Fluid DOFs Wall Clock Time
Full-order 64400 22304 sec

POD-Volterra 8 8.132 sec

Table 1 Computational performance

The cost of computing the state-space realization
using ERA was small relative to the cost of a full-
system analysis. Since there were eight forcing terms,
eight additional runs of the full order solver were re-
quired to provide the impulse response data. Each 25
time unit impulse response runs required 1394 seconds
wall-clock time, resulting in 11152 seconds of computer
time for generating the impulse response data. An ad-
ditional 25 time unit run was required for snapshot
collection to generate the aeroelastic modes, bringing
the total computer processing time to 12546 seconds,
or roughly half of the computational cost associated
with a single full-system time integration.

Conclusions

The Volterra-POD approach produced a stable and
accurate aeroelastic ROM with four orders of magni-
tude reduction in problem order and computational
expense. Aeroelastic modes were formed from snap-
shots obtained during the initial build-up of LCO, and
with a fixed value of dynamic panel pressure. The
full system model was impulsed using the structural
velocity and position modes. The flow field was pro-
jected onto the aeroelastic modes to determine the
modal amplitudes, and a linear, state-space realiza-
tion for the fluid dynamics was synthesized from the
modal impulse responses. The fluid and structural
models were tightly coupled to form the aeroelastic
ROM. Two cases were considered, one used uniform
flow as a base term about which perturbations were
computed by the reduced-order fluid model. The sec-
ond case used steady-state flow over the initial panel
deflection as the base-flow term. Both cases resulted
in ROMs that correctly predicted LCO behavior over
a wide parameter space; however, we concluded that
uniform base flow was more desirable for predicting
LCO onset. In addition, it was desirable to filter high-
frequency information out of the impulse response data
by computing the realization with relatively large time
steps.
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Fluid modes obtained from snapshots of the im-
pulsed flow-field were found to be inadequate for accu-
rate reduced-order modeling of the supersonic, aeroe-
lastic flow field. However, we only made an initial
attempt to examine this approach, and additional re-
search should be conducted before dismissing the tech-
nique completely.

Reduced-order modeling of the structure was also
explored, and the results demonstrated that a single
training event could produce adequate POD modes for
both the fluid and structure. Future applications of
this technique will involve very high-order, nonlinear
structural models requiring order-reduction along with
the fluid model.
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